Solveeit Logo

Question

Question: \[\int_{}^{}{\sqrt{\frac{\mathbf{1}\mathbf{-}\mathbf{x}}{\mathbf{1 + x}}}\mathbf{dx =}}\]...

1x1+xdx=\int_{}^{}{\sqrt{\frac{\mathbf{1}\mathbf{-}\mathbf{x}}{\mathbf{1 + x}}}\mathbf{dx =}}

A

sin1x121x2+C\sin^{- 1}x - \frac{1}{2}\sqrt{1 - x^{2}} + C

B

sin1x+121x2+C\sin^{- 1}x + \frac{1}{2}\sqrt{1 - x^{2}} + C

C

sin1x1x2+C\sin^{- 1}x - \sqrt{1 - x^{2}} + C

D

sin1x+1x2+C\sin^{- 1}x + \sqrt{1 - x^{2}} + C

Answer

sin1x+1x2+C\sin^{- 1}x + \sqrt{1 - x^{2}} + C

Explanation

Solution

Putx=cos2θx = \cos 2\theta, then θ=12cos1x\theta = \frac{1}{2}\cos^{- 1}xdx=2sin2θdθdx = - 2\sin 2\theta d\theta

I=21cos2θ1+cos2θ.sin2θdθ\therefore I = - 2\int_{}^{}{\sqrt{\frac{1 - \cos 2\theta}{1 + \cos 2\theta}}.\sin 2\theta d\theta} I=22sin2θ/2cos2θ.sin2θ.dθI=2tanθ.2sinθcosθdθ\Rightarrow I = - 2\int_{}^{}\sqrt{2\sin^{2}\theta/2\cos^{2}\theta}.\sin 2\theta.d\theta \Rightarrow I = - 2\int_{}^{}{\tan\theta.2\sin\theta\cos\theta d\theta} I=2.2sin2θdθ\Rightarrow I = - 2.2\int_{}^{}{\sin^{2}\theta d\theta} I=2(1cos2θ)dθ\Rightarrow I = - 2\int_{}^{}{(1 - \cos 2\theta)d\theta} I=2[θsin2θ2]+C1\Rightarrow I = - 2\left\lbrack \theta - \frac{\sin 2\theta}{2} \right\rbrack + C_{1}

I=2θ+sin2θ+C1\Rightarrow I = - 2\theta + \sin 2\theta + C_{1} I=cos1x+1x2+C1I=π2+sin1x+1x2+C1I=sin1x+1x2+C\Rightarrow I = - \cos^{- 1}x + \sqrt{1 - x^{2}} + C_{1} \Rightarrow I = - \frac{\pi}{2} + \sin^{- 1}x + \sqrt{1 - x^{2}} + C_{1} \Rightarrow I = \sin^{- 1}x + \sqrt{1 - x^{2}} + Cwhere C=C1π2C = C_{1} - \frac{\pi}{2}]

Trick : Rationalization of denominator and put 1x2=t2.1 - x^{2} = t^{2}.