Question
Question: \[\int_{}^{}{\sqrt{\frac{\mathbf{1}\mathbf{-}\mathbf{x}}{\mathbf{1 + x}}}\mathbf{dx =}}\]...
∫1+x1−xdx=
A
sin−1x−211−x2+C
B
sin−1x+211−x2+C
C
sin−1x−1−x2+C
D
sin−1x+1−x2+C
Answer
sin−1x+1−x2+C
Explanation
Solution
Putx=cos2θ, then θ=21cos−1x ⇒ dx=−2sin2θdθ
∴I=−2∫1+cos2θ1−cos2θ.sin2θdθ ⇒I=−2∫2sin2θ/2cos2θ.sin2θ.dθ⇒I=−2∫tanθ.2sinθcosθdθ ⇒I=−2.2∫sin2θdθ ⇒I=−2∫(1−cos2θ)dθ ⇒I=−2[θ−2sin2θ]+C1
⇒I=−2θ+sin2θ+C1 ⇒I=−cos−1x+1−x2+C1⇒I=−2π+sin−1x+1−x2+C1⇒I=sin−1x+1−x2+Cwhere C=C1−2π]
Trick : Rationalization of denominator and put 1−x2=t2.