Solveeit Logo

Question

Question: \(\int_{}^{}\sqrt{\frac{1–x}{1 + x}}\) dx =...

1x1+x\int_{}^{}\sqrt{\frac{1–x}{1 + x}} dx =

A

sin–1 x – 12\frac { 1 } { 2 } 1x2\sqrt{1–x^{2}} + c

B

sin–1 x + 121x2\frac{1}{2}\sqrt{1–x^{2}}+ c

C

sin–1 x – 1x2\sqrt{1–x^{2}} + c

D

sin–1 x + 1x2\sqrt{1–x^{2}} + c

Answer

sin–1 x + 121x2\frac{1}{2}\sqrt{1–x^{2}}+ c

Explanation

Solution

dx , multiply and divide by

= 1x1x2\int \frac { 1 - x } { \sqrt { 1 - x ^ { 2 } } } dx =

= sin–1x + 12\frac { 1 } { 2 }dx

= sin–1x + + c