Question
Question: \(\int_{}^{}\sqrt{\frac{1 - x}{1 + x}}\)· \(\frac{1}{x}\)dx is equal to –...
∫1+x1−x· x1dx is equal to –
A
–2 log 1−x−1+x1+x+1−x + cos–1 x + c
B
– log 1+x−1−x1−x+1+x + cos–1 x + c
C
– log 1−1−x21+1−x2+ cos–1 x + c
D
None of these
Answer
– log 1−1−x21+1−x2+ cos–1 x + c
Explanation
Solution
On putting x = cos 2q, and dx = –2 sin 2q dq,
We get I = ∫1+x1−x x1 dx
= ∫1+cos2θ1−cos2θ × cos2θ1 × (–2 sin 2q) dq
= ∫2cos2θ2sin2θ × (cos2θ−4sinθcosθ) dq
= –∫cos2θ4sin2θdq
= –2∫cos2θ1−cos2θdq
= –2 (sec 2q – 1) dq
= –2 log |sec 2q + tan 2q| + 2q + c
= –2 log cos2θ1+sin2θ + 2q + c
= –2 log 1−sin22θ1+sin2θ + 2q + c
= –2 log 1−sin2θ1+sin2θ + 2q + c
= – log 1−1−x21+1−x2 + cos–1 x + c
Hence (3) is the correct answer.