Solveeit Logo

Question

Question: \(\int_{}^{}\sqrt{e^{x}–1}\) dx...

ex1\int_{}^{}\sqrt{e^{x}–1} dx

A

2 [ex1tan1ex1]+c\left\lbrack \sqrt{e^{x}–1}–\tan^{–1}\sqrt{e^{x}–1} \right\rbrack + c

B

ex1\sqrt{e^{x}–1}– tan–1ex1\sqrt{e^{x}–1} + c

C

2[ex1+tan1ex1]+c\left\lbrack \sqrt{e^{x}–1} + \tan^{–1}\sqrt{e^{x}–1} \right\rbrack + c

D

ex1\sqrt{e^{x}–1} + tan–1ex1\sqrt{e^{x}–1} + c

Answer

2 [ex1tan1ex1]+c\left\lbrack \sqrt{e^{x}–1}–\tan^{–1}\sqrt{e^{x}–1} \right\rbrack + c

Explanation

Solution

Put ex–1 = t2 ̃ ex dx = 2t dt

dx = \ dt

= 2t2t2+1\int \frac { 2 \mathrm { t } ^ { 2 } } { \mathrm { t } ^ { 2 } + 1 } dt = dt

= dt – 2 dt

= 2 dt2tan1(t)+c\int \mathrm { dt } - 2 \tan ^ { - 1 } ( \mathrm { t } ) + \mathrm { c } = 2t – 2 tan–1(t) + c

= 2 ex1\sqrt { \mathrm { e } ^ { \mathrm { x } } - 1 } – 2 tan–1() + c