Solveeit Logo

Question

Question: \(\int_{}^{}\sqrt{e^{x} - 1}\)dx is equal to –...

ex1\int_{}^{}\sqrt{e^{x} - 1}dx is equal to –

A

2[ex1\sqrt{e^{x} - 1}– tan–1ex1\sqrt{e^{x} - 1}] + c

B

ex1\sqrt{e^{x} - 1}– tan–1ex1\sqrt{e^{x} - 1}+ c

C

ex1\sqrt{e^{x} - 1}+ tan–1ex1\sqrt{e^{x} - 1} + c

D

2[ex1\sqrt{e^{x} - 1}+ tan–1ex1\sqrt{e^{x} - 1}] + c

Answer

2\sqrt{e^{x} - 1}$– tan<sup>–1</sup>$\sqrt{e^{x} - 1} + c

Explanation

Solution

Let I = ex1\int_{}^{}\sqrt{e^{x} - 1}dx = exex11+(ex1)2\int_{}^{}\frac{e^{x}\sqrt{e^{x} - 1}}{1 + (\sqrt{e^{x} - 1})^{2}}dx

Put ex1\sqrt{e^{x} - 1} = t Ž ex dx = 2t dt

\ I = 2 t2dt1+t2\int_{}^{}\frac{t^{2}dt}{1 + t^{2}} = 2 (1+t21+t2)\int_{}^{}\left( \frac{1 + t^{2}}{1 + t^{2}} \right)dt – 211+t2\int_{}^{}\frac{1}{1 + t^{2}}dt

= 2 [ex1\sqrt{e^{x} - 1} – tan–1 ex1\sqrt{e^{x} - 1}] + c