Solveeit Logo

Question

Question: \[\int_{}^{}{\sin^{3}xco}s^{2}xdx\]...

sin3xcos2xdx\int_{}^{}{\sin^{3}xco}s^{2}xdx

A

cos2x5cos3x3+c\frac{\cos^{2}x}{5} - \frac{\cos^{3}x}{3} + c

B

cos55+cos33+c\frac{\cos^{5}}{5} + \frac{\cos^{3}}{3} + c

C

sin55sin33+c\frac{\sin^{5}}{5} - \frac{\sin^{3}}{3} + c

D

sin55+sin33+c\frac{\sin^{5}}{5} + \frac{\sin^{3}}{3} + c

Answer

cos2x5cos3x3+c\frac{\cos^{2}x}{5} - \frac{\cos^{3}x}{3} + c

Explanation

Solution

I=sinx(1cos2x)cos2xdxI = \int_{}^{}{\sin x(1 - \cos^{2}x)\cos^{2}xdx}

Putcosx=tsinxdx=dt\cos x = t \Rightarrow - \sin xdx = dt I=(t2t4)dt=t55t33+c=cos5x5cos3x3+c.\Rightarrow I = - \int_{}^{}{(t^{2} - t^{4})dt = \frac{t^{5}}{5} - \frac{t^{3}}{3} + c = \frac{\cos^{5}x}{5} - \frac{\cos^{3}x}{3}} + c.