Solveeit Logo

Question

Question: \[\int_{}^{}{\sin x\sin hxdx =}\]...

sinxsinhxdx=\int_{}^{}{\sin x\sin hxdx =}

A

12(exex)+c\frac{1}{2}(e^{x} - e^{- x}) + c

B

12[sinxcoshxcosxsinhx]+c\frac{1}{2}\lbrack\sin x\cos hx - \cos x\sin hx\rbrack + c

C

12[sinxcoshx+cosxcoshx]+c\frac{1}{2}\lbrack\sin x\cos hx + \cos x\cos hx\rbrack + c

D

None of these

Answer

12[sinxcoshxcosxsinhx]+c\frac{1}{2}\lbrack\sin x\cos hx - \cos x\sin hx\rbrack + c

Explanation

Solution

I=sinxsinhxdx=sinhxcosx+coshxcosxdx=sinhxcosx+[coshxsinxsinhxsinxdx]I=12[sinxcosxcosxsinhx]+c.I = \int_{}^{}{\sin x\sin hxdx = - \sin hx\cos x} + \int_{}^{}\begin{aligned} & \cos hx\cos xdx = \sin hx\cos x + \\ & \lbrack\cos hx\sin x - \int_{}^{}{\sin hx\sin xdx\rbrack} \end{aligned}I = \frac{1}{2}\lbrack\sin x\cos x - \cos x\sin hx\rbrack + c.