Solveeit Logo

Question

Question: \(\int_{}^{}{(\sin 2x - \cos 2x)}\)dx =\(\frac{1}{\sqrt{2}}\)sin (2x – a) + b...

(sin2xcos2x)\int_{}^{}{(\sin 2x - \cos 2x)}dx =12\frac{1}{\sqrt{2}}sin (2x – a) + b

A

a = 5π4\frac{5\pi}{4}, b Ī R

B

a = –5π4\frac{5\pi}{4}, b Ī R

C

a = π4\frac{\pi}{4}, b Ī R

D

None of these

Answer

a = –5π4\frac{5\pi}{4}, b Ī R

Explanation

Solution

ņ (sin 2x – cos 2x) dx = 12\frac{1}{\sqrt{2}} sin (2x – a) + b

Ž 2\sqrt { 2 } (12sin2x12cos2x)\int_{}^{}\left( \frac{1}{\sqrt{2}}\sin 2x - \frac{1}{\sqrt{2}}\cos 2x \right)dx

= 12\frac { 1 } { \sqrt { 2 } } sin (2x – a) + b

Ž –2\sqrt { 2 } (12cos2x12sin2x)\int_{}^{}\left( \frac{1}{\sqrt{2}}\cos 2x - \frac{1}{\sqrt{2}}\sin 2x \right)dx

= 12\frac { 1 } { \sqrt { 2 } } sin (2x – a) + b

Ž –2\sqrt { 2 } cos\int_{}^{\int}\cos (2x + p/4) dx =12\frac{1}{\sqrt{2}}sin (2x – a) + b

Ž –22\frac{\sqrt{2}}{2}sin (2x + p/4) + c = 12\frac{1}{\sqrt{2}}sin (2x – a) + b

Ž 12\frac { 1 } { \sqrt { 2 } }sin (2x+5π4)\left( 2x + \frac{5\pi}{4} \right) + c =12\frac{1}{\sqrt{2}}sin (2x – a) + b

\ a = – 5π4\frac{5\pi}{4}, b Ī R.