Solveeit Logo

Question

Question: \(\int_{}^{}{\sec\left( x–\frac{\pi}{3} \right)}\sec\left( x–\frac{\pi}{6} \right)\)dx =...

sec(xπ3)sec(xπ6)\int_{}^{}{\sec\left( x–\frac{\pi}{3} \right)}\sec\left( x–\frac{\pi}{6} \right)dx =

A

logcos(xπ/3)cos(xπ/6)+C\log\left| \frac{\cos(x–\pi/3)}{\cos(x–\pi/6)} \right| + C

B

2logcos(xπ/3)cos(xπ/6)+C2\log\left| \frac{\cos(x–\pi/3)}{\cos(x–\pi/6)} \right| + C

C

2logcos(xπ/6)cos(xπ/3)+C2\log\left| \frac{\cos(x–\pi/6)}{\cos(x–\pi/3)} \right| + C

D

logcos(xπ/6)cos(xπ/3)+C\log\left| \frac{\cos(x–\pi/6)}{\cos(x–\pi/3)} \right| + C

Answer

2logcos(xπ/3)cos(xπ/6)+C2\log\left| \frac{\cos(x–\pi/3)}{\cos(x–\pi/6)} \right| + C

Explanation

Solution

= 1sinπ/6\frac { 1 } { \sin \pi / 6 } {sin(xπ6)(xπ3)}cos(xπ3)cos(xπ6)dx\int \frac { \left\{ \sin \left( x - \frac { \pi } { 6 } \right) - \left( x - \frac { \pi } { 3 } \right) \right\} } { \cos \left( x - \frac { \pi } { 3 } \right) \cos \left( x - \frac { \pi } { 6 } \right) } d x

= 2

= 2{tan(xπ6)tan(xπ3)}dx\int \left\{ \tan \left( x - \frac { \pi } { 6 } \right) - \tan \left( x - \frac { \pi } { 3 } \right) \right\} d x

= 2

= 2logcos(xπ3)cos(xπ6)\left| \frac { \cos \left( x - \frac { \pi } { 3 } \right) } { \cos \left( x - \frac { \pi } { 6 } \right) } \right|+C