Question
Question: \(\int_{}^{}{\sec\left( x–\frac{\pi}{3} \right)}\sec\left( x–\frac{\pi}{6} \right)\)dx =...
∫sec(x–3π)sec(x–6π)dx =
A
logcos(x–π/6)cos(x–π/3)+C
B
2logcos(x–π/6)cos(x–π/3)+C
C
2logcos(x–π/3)cos(x–π/6)+C
D
logcos(x–π/3)cos(x–π/6)+C
Answer
2logcos(x–π/6)cos(x–π/3)+C
Explanation
Solution

= sinπ/61 ∫cos(x−3π)cos(x−6π){sin(x−6π)−(x−3π)}dx
= 2
= 2∫{tan(x−6π)−tan(x−3π)}dx
= 2
= 2logcos(x−6π)cos(x−3π)+C