Solveeit Logo

Question

Question: \(\int_{}^{}\sec^{4/3}\)x cosec<sup>8/3</sup> x dx is equal to –...

sec4/3\int_{}^{}\sec^{4/3}x cosec8/3 x dx is equal to –

A

35\frac{3}{5}tan–8/3 x + 3 tan–2/3 x + c

B

35\frac{3}{5}tan–5/3 x + 3 tan1/3 x + c

C

35\frac{3}{5}tan–8/3 x + 3 tan–2/3 x + c

D

35\frac{3}{5}tan–8/3 x – 3 tan–2/3 x + c

Answer

35\frac{3}{5}tan–5/3 x + 3 tan1/3 x + c

Explanation

Solution

We have, I = sec4/3\int \sec ^ { 4 / 3 } x cosec8/3 x dx

= 1cos4/3xsin8/3x\int \frac { 1 } { \cos ^ { 4 / 3 } x \sin ^ { 8 / 3 } x } dx = cos4/3\int \cos ^ { - 4 / 3 } x sin–8/3 x dx

Since – (43+83)\left( \frac { 4 } { 3 } + \frac { 8 } { 3 } \right) = –4, which is an even integer. So, we divide both numerator and denominator by cos4 x.

\ I = dx

= sec2 x dx = dt where t = tan x

= (t8/3+t2/3)\int \left( \mathrm { t } ^ { - 8 / 3 } + \mathrm { t } ^ { - 2 / 3 } \right) dt = – 35t5/3+3t1/3\frac { 3 } { 5 } \mathrm { t } ^ { - 5 / 3 } + 3 \mathrm { t } ^ { 1 / 3 } + c

= –tan1/3 x + c.

Hence (2) is the correct answer.