Solveeit Logo

Question

Question: \[\int_{}^{}{(\sec x + \tan x)^{2}dx =}\]...

(secx+tanx)2dx=\int_{}^{}{(\sec x + \tan x)^{2}dx =}

A

2(secx+tanx)x+c2(\sec x + \tan x) - x + c

B

1/3(secx+tanx)3+c1/3(\sec x + \tan x)^{3} + c

C

secx(secx+tanx)+c\sec x(\sec x + \tan x) + c

D

2(secx+tanx)+c2(\sec x + \tan x) + c

Answer

1/3(secx+tanx)3+c1/3(\sec x + \tan x)^{3} + c

Explanation

Solution

1e2x+1- \frac{1}{e^{2x} + 1} (formula).