Solveeit Logo

Question

Question: \(\int_{–\pi}^{\pi}\frac{2x(1 + \sin x)}{1 + \cos^{2}x}\)dx is –...

ππ2x(1+sinx)1+cos2x\int_{–\pi}^{\pi}\frac{2x(1 + \sin x)}{1 + \cos^{2}x}dx is –

A

p2/4

B

p2

C

Zero

D

p/2

Answer

p2

Explanation

Solution

ππ2x(1+sinx)1+cos2x\int_{–\pi}^{\pi}\frac{2x(1 + \sin x)}{1 + \cos^{2}x}dx

= ππ2x1+cos2xdx+2\int _ { - \pi } ^ { \pi } \frac { 2 x } { 1 + \cos ^ { 2 } x } d x + 2 ππxsinx1+cos2x\int_{–\pi}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}dx

= 0 + 4 0πxsinx1+cos2x\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}dx Ž 4 0πxsinx1+cos2x\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x} dx…(1)

Now I =0πxsinx1+cos2x\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}dx =0π(πx)sin(πx)1+cos2(πx)\int_{0}^{\pi}\frac{(\pi - x)\sin(\pi - x)}{1 + \cos^{2}(\pi - x)}dx

= 0π(πx)sinx1+cos2x\int_{0}^{\pi}\frac{(\pi - x)\sin x}{1 + \cos^{2}x} dx

I = dx – 0πxsinx1+cos2x\int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}dx

Ž 2I = p0πsinx1+cos2x\int_{0}^{\pi}\frac{\sin x}{1 + \cos^{2}x}dx

Ž π2\frac { \pi } { 2 } 0πsinx1+cos2x\int_{0}^{\pi}\frac{\sin x}{1 + \cos^{2}x}dx

\ From (1),

ππ2x(1+sinx)1+cos2x\int _ { - \pi } ^ { \pi } \frac { 2 x ( 1 + \sin x ) } { 1 + \cos ^ { 2 } x } dx = 4(π2)\left( \frac { \pi } { 2 } \right) 0πsinx1+cos2x\int_{0}^{\pi}\frac{\sin x}{1 + \cos^{2}x}dx

= 2p 0πsinx1+cos2x\int_{0}^{\pi}\frac{\sin x}{1 + \cos^{2}x}dx

Put cos x = t so that – sin x dx = dt

i.e. sinx dx = – dt.

When x = 0, t = 1 ; when x = p, t = –1

\ ππ2x(1+sinx)1+cos2x\int_{- \pi}^{\pi}\frac{2x(1 + \sin x)}{1 + \cos^{2}x}dx = 2p 11dt1+t2\int_{1}^{–1}\frac{- dt}{1 + t^{2}}

= –2p [tan1t]1\left\lbrack \tan^{- 1}t \right\rbrack_{}^{–1}

= –2p [tan–1(–1) – tan–1 (1)]

= –2p[π4π4]\left\lbrack –\frac{\pi}{4} - \frac{\pi}{4} \right\rbrack = p2.