Question
Question: \(\int_{–\pi}^{\pi}\frac{2x(1 + \sin x)}{1 + \cos^{2}x}\)dx is –...
∫–ππ1+cos2x2x(1+sinx)dx is –
A
p2/4
B
p2
C
Zero
D
p/2
Answer
p2
Explanation
Solution
∫–ππ1+cos2x2x(1+sinx)dx
= ∫−ππ1+cos2x2xdx+2 ∫–ππ1+cos2xxsinxdx
= 0 + 4 ∫0π1+cos2xxsinxdx Ž 4 ∫0π1+cos2xxsinx dx…(1)
Now I =∫0π1+cos2xxsinxdx =∫0π1+cos2(π−x)(π−x)sin(π−x)dx
= ∫0π1+cos2x(π−x)sinx dx
I = dx – ∫0π1+cos2xxsinxdx
Ž 2I = p∫0π1+cos2xsinxdx
Ž 2π ∫0π1+cos2xsinxdx
\ From (1),
∫−ππ1+cos2x2x(1+sinx) dx = 4(2π) ∫0π1+cos2xsinxdx
= 2p ∫0π1+cos2xsinxdx
Put cos x = t so that – sin x dx = dt
i.e. sinx dx = – dt.
When x = 0, t = 1 ; when x = p, t = –1
\ ∫−ππ1+cos2x2x(1+sinx)dx = 2p ∫1–11+t2−dt
= –2p [tan−1t]–1
= –2p [tan–1(–1) – tan–1 (1)]
= –2p[–4π−4π] = p2.