Solveeit Logo

Question

Question: \(\int_{\pi/4}^{3\pi/4}\frac{dx}{1 + cosx}\) is equal to...

π/43π/4dx1+cosx\int_{\pi/4}^{3\pi/4}\frac{dx}{1 + cosx} is equal to

A

2

B

–2

C

12\frac{1}{2}

D

12\frac{1}{2}

Answer

2

Explanation

Solution

Let I = π/43π/4dx1+cosx\int_{\pi/4}^{3\pi/4}\frac{dx}{1 + \cos x} = π/43π/4dx1cosx\int_{\pi/4}^{3\pi/4}\frac{dx}{1 - \cos x}

⇒ 2I = 2π/43π/4dx1cos2x\int_{\pi/4}^{3\pi/4}\frac{dx}{1 - \cos^{2}x}

= 2π/43π/4cosec2xdx= 2cotxπ/43π/4=4\int_{\pi/4}^{3\pi/4}{\cos ec^{2}xdx} = - \left. \ 2\cot x \right|_{\pi/4}^{3\pi/4} = 4 ⇒ I = 2