Solveeit Logo

Question

Question: \(\int_{\pi/4}^{3\pi/4}\frac{dx}{1 + \cos x}\) is equal to...

π/43π/4dx1+cosx\int_{\pi/4}^{3\pi/4}\frac{dx}{1 + \cos x} is equal to

A

2

B

–2

C

½

D

–1/2

Answer

2

Explanation

Solution

I=π/43π/411cosxdxI = \int_{\pi/4}^{3\pi/4}{\frac{1}{1 - \cos x}dx} [[cos(π4+3π4x)=cosx]\because\left\lbrack \cos\left( \frac{\pi}{4} + \frac{3\pi}{4} - x \right) = - \cos x \right\rbrack

2I=π/43π/421cos2xdx2I = \int_{\pi/4}^{3\pi/4}{\frac{2}{1 - \cos^{2}x}dx}

2I=2π/43π/4cosec2xdx2I = 2\int_{\pi/4}^{3\pi/4}{co\text{se}\text{c}^{2}xdx}2I=2[cotx]π/43π/4=42I = - 2\lbrack\cot x\rbrack_{\pi ⥂ / ⥂ 4}^{3\pi ⥂ / ⥂ 4} = 4 ⇒ I = 2.