Solveeit Logo

Question

Question: $\int_{\pi}^{2\pi}[4\sin x]dx = $...

π2π[4sinx]dx=\int_{\pi}^{2\pi}[4\sin x]dx =

Answer

2\arcsin(1/4) + 2\arcsin(3/4) - \frac{11\pi}{3}

Explanation

Solution

To evaluate the integral π2π[4sinx]dx\int_{\pi}^{2\pi}[4\sin x]dx, we first determine the behavior of the function [4sinx][4\sin x] in the interval [π,2π][\pi, 2\pi].

In the interval [π,2π][\pi, 2\pi], sinx\sin x ranges from 00 down to 1-1 and back to 00. Thus, 4sinx4\sin x ranges from 00 down to 4-4 and back to 00. The possible integer values for [4sinx][4\sin x] are 1,2,3,4-1, -2, -3, -4.

The value of [4sinx][4\sin x] changes when 4sinx4\sin x crosses an integer. We find the xx values in [π,2π][\pi, 2\pi] where 4sinx4\sin x equals 1,2,3,4-1, -2, -3, -4: \begin{itemize} \item 4sinx=1    sinx=1/44\sin x = -1 \implies \sin x = -1/4. Let α1=arcsin(1/4)\alpha_1 = \arcsin(1/4). In [π,2π][\pi, 2\pi], this occurs at x=π+α1x = \pi + \alpha_1 and x=2πα1x = 2\pi - \alpha_1. \item 4sinx=2    sinx=1/24\sin x = -2 \implies \sin x = -1/2. In [π,2π][\pi, 2\pi], this occurs at x=π+π/6=7π/6x = \pi + \pi/6 = 7\pi/6 and x=2ππ/6=11π/6x = 2\pi - \pi/6 = 11\pi/6. \item 4sinx=3    sinx=3/44\sin x = -3 \implies \sin x = -3/4. Let α3=arcsin(3/4)\alpha_3 = \arcsin(3/4). In [π,2π][\pi, 2\pi], this occurs at x=π+α3x = \pi + \alpha_3 and x=2πα3x = 2\pi - \alpha_3. \item 4sinx=4    sinx=14\sin x = -4 \implies \sin x = -1. In [π,2π][\pi, 2\pi], this occurs at x=3π/2x = 3\pi/2. \end{itemize} The ordered critical points in [π,2π][\pi, 2\pi] are: π,π+α1,7π/6,π+α3,3π/2,2πα3,11π/6,2πα1,2π\pi, \pi+\alpha_1, 7\pi/6, \pi+\alpha_3, 3\pi/2, 2\pi-\alpha_3, 11\pi/6, 2\pi-\alpha_1, 2\pi.

We can calculate the integral by summing the product of the constant value of [4sinx][4\sin x] in each sub-interval and the length of that sub-interval. Alternatively, we can sum the product of each integer value kk and the total length of the set {x[π,2π]:[4sinx]=k}\{x \in [\pi, 2\pi] : [4\sin x] = k\}.

\begin{itemize} \item For [4sinx]=1[4\sin x] = -1: The set is (π,π+α1)(2πα1,2π)(\pi, \pi+\alpha_1) \cup (2\pi-\alpha_1, 2\pi). The total length is α1+α1=2α1\alpha_1 + \alpha_1 = 2\alpha_1. Contribution: (1)(2α1)=2α1(-1)(2\alpha_1) = -2\alpha_1. \item For [4sinx]=2[4\sin x] = -2: The set is (π+α1,7π/6)(11π/6,2πα1)(\pi+\alpha_1, 7\pi/6) \cup (11\pi/6, 2\pi-\alpha_1). The total length is (7π/6(π+α1))+(2πα111π/6)=(π/6α1)+(π/6α1)=π/32α1(7\pi/6 - (\pi+\alpha_1)) + (2\pi-\alpha_1 - 11\pi/6) = (\pi/6 - \alpha_1) + (\pi/6 - \alpha_1) = \pi/3 - 2\alpha_1. Contribution: (2)(π/32α1)=2π/3+4α1(-2)(\pi/3 - 2\alpha_1) = -2\pi/3 + 4\alpha_1. \item For [4sinx]=3[4\sin x] = -3: The set is (7π/6,π+α3)(2πα3,11π/6)(7\pi/6, \pi+\alpha_3) \cup (2\pi-\alpha_3, 11\pi/6). The total length is (π+α37π/6)+(11π/6(2πα3))=(α3π/6)+(α3π/6)=2α3π/3(\pi+\alpha_3 - 7\pi/6) + (11\pi/6 - (2\pi-\alpha_3)) = (\alpha_3 - \pi/6) + (\alpha_3 - \pi/6) = 2\alpha_3 - \pi/3. Contribution: (3)(2α3π/3)=6α3+π(-3)(2\alpha_3 - \pi/3) = -6\alpha_3 + \pi. \item For [4sinx]=4[4\sin x] = -4: The set is (π+α3,3π/2)(3π/2,2πα3)(\pi+\alpha_3, 3\pi/2) \cup (3\pi/2, 2\pi-\alpha_3). The total length is (3π/2(π+α3))+(2πα33π/2)=(π/2α3)+(π/2α3)=π2α3(3\pi/2 - (\pi+\alpha_3)) + (2\pi-\alpha_3 - 3\pi/2) = (\pi/2 - \alpha_3) + (\pi/2 - \alpha_3) = \pi - 2\alpha_3. Contribution: (4)(π2α3)=4π+8α3(-4)(\pi - 2\alpha_3) = -4\pi + 8\alpha_3. \end{itemize} Summing the contributions: (2α1)+(2π/3+4α1)+(6α3+π)+(4π+8α3)(-2\alpha_1) + (-2\pi/3 + 4\alpha_1) + (-6\alpha_3 + \pi) + (-4\pi + 8\alpha_3) =(2α1+4α1)+(6α3+8α3)+(2π/3+π4π)= (-2\alpha_1 + 4\alpha_1) + (-6\alpha_3 + 8\alpha_3) + (-2\pi/3 + \pi - 4\pi) =2α1+2α32π/33π= 2\alpha_1 + 2\alpha_3 - 2\pi/3 - 3\pi =2α1+2α32π/39π/3= 2\alpha_1 + 2\alpha_3 - 2\pi/3 - 9\pi/3 =2α1+2α311π3= 2\alpha_1 + 2\alpha_3 - \frac{11\pi}{3} Substituting α1=arcsin(1/4)\alpha_1 = \arcsin(1/4) and α3=arcsin(3/4)\alpha_3 = \arcsin(3/4), the integral is 2arcsin(1/4)+2arcsin(3/4)11π32\arcsin(1/4) + 2\arcsin(3/4) - \frac{11\pi}{3}.