Question
Question: $\int_{\pi}^{2\pi}[4\sin x]dx = $...
∫π2π[4sinx]dx=

2\arcsin(1/4) + 2\arcsin(3/4) - \frac{11\pi}{3}
Solution
To evaluate the integral ∫π2π[4sinx]dx, we first determine the behavior of the function [4sinx] in the interval [π,2π].
In the interval [π,2π], sinx ranges from 0 down to −1 and back to 0. Thus, 4sinx ranges from 0 down to −4 and back to 0. The possible integer values for [4sinx] are −1,−2,−3,−4.
The value of [4sinx] changes when 4sinx crosses an integer. We find the x values in [π,2π] where 4sinx equals −1,−2,−3,−4: \begin{itemize} \item 4sinx=−1⟹sinx=−1/4. Let α1=arcsin(1/4). In [π,2π], this occurs at x=π+α1 and x=2π−α1. \item 4sinx=−2⟹sinx=−1/2. In [π,2π], this occurs at x=π+π/6=7π/6 and x=2π−π/6=11π/6. \item 4sinx=−3⟹sinx=−3/4. Let α3=arcsin(3/4). In [π,2π], this occurs at x=π+α3 and x=2π−α3. \item 4sinx=−4⟹sinx=−1. In [π,2π], this occurs at x=3π/2. \end{itemize} The ordered critical points in [π,2π] are: π,π+α1,7π/6,π+α3,3π/2,2π−α3,11π/6,2π−α1,2π.
We can calculate the integral by summing the product of the constant value of [4sinx] in each sub-interval and the length of that sub-interval. Alternatively, we can sum the product of each integer value k and the total length of the set {x∈[π,2π]:[4sinx]=k}.
\begin{itemize} \item For [4sinx]=−1: The set is (π,π+α1)∪(2π−α1,2π). The total length is α1+α1=2α1. Contribution: (−1)(2α1)=−2α1. \item For [4sinx]=−2: The set is (π+α1,7π/6)∪(11π/6,2π−α1). The total length is (7π/6−(π+α1))+(2π−α1−11π/6)=(π/6−α1)+(π/6−α1)=π/3−2α1. Contribution: (−2)(π/3−2α1)=−2π/3+4α1. \item For [4sinx]=−3: The set is (7π/6,π+α3)∪(2π−α3,11π/6). The total length is (π+α3−7π/6)+(11π/6−(2π−α3))=(α3−π/6)+(α3−π/6)=2α3−π/3. Contribution: (−3)(2α3−π/3)=−6α3+π. \item For [4sinx]=−4: The set is (π+α3,3π/2)∪(3π/2,2π−α3). The total length is (3π/2−(π+α3))+(2π−α3−3π/2)=(π/2−α3)+(π/2−α3)=π−2α3. Contribution: (−4)(π−2α3)=−4π+8α3. \end{itemize} Summing the contributions: (−2α1)+(−2π/3+4α1)+(−6α3+π)+(−4π+8α3) =(−2α1+4α1)+(−6α3+8α3)+(−2π/3+π−4π) =2α1+2α3−2π/3−3π =2α1+2α3−2π/3−9π/3 =2α1+2α3−311π Substituting α1=arcsin(1/4) and α3=arcsin(3/4), the integral is 2arcsin(1/4)+2arcsin(3/4)−311π.