Solveeit Logo

Question

Question: \[\int_{}^{}{\mathbf{x}\sqrt{\mathbf{1 +}\mathbf{x}^{\mathbf{2}}}\mathbf{dx =}}\]...

x1+x2dx=\int_{}^{}{\mathbf{x}\sqrt{\mathbf{1 +}\mathbf{x}^{\mathbf{2}}}\mathbf{dx =}}

A

1+2x21+x2+c\frac{1 + 2x^{2}}{\sqrt{1 + x^{2}}} + c

B

1+x2+c\sqrt{1 + x^{2}} + c

C

3(1+x2)3/2+c3(1 + x^{2})^{3/2} + c

D

13(1+x2)3/2+c\frac{1}{3}(1 + x^{2})^{3/2} + c

Answer

13(1+x2)3/2+c\frac{1}{3}(1 + x^{2})^{3/2} + c

Explanation

Solution

Put1+x2=t1 + x^{2} = t 2xdx=dt\Rightarrow 2xdx = dt,

x1+x2dx=12t1/2dt=12.t3/23/2+c\int_{}^{}{x\sqrt{1 + x^{2}}dx = \frac{1}{2}\int_{}^{}{t^{1/2}dt = \frac{1}{2}.\frac{t^{3/2}}{3/2} + c}} =13(1+x2)3/2+c= \frac{1}{3}(1 + x^{2})^{3/2} + c