Solveeit Logo

Question

Question: \(\int_{}^{}{\mathbf{x}\left( \frac{\mathbf{\sec}\mathbf{2}\mathbf{x}\mathbf{-}\mathbf{1}}{\mathbf{\...

x(sec2x1sec2x+1)\int_{}^{}{\mathbf{x}\left( \frac{\mathbf{\sec}\mathbf{2}\mathbf{x}\mathbf{-}\mathbf{1}}{\mathbf{\sec}\mathbf{2}\mathbf{x + 1}} \right)} dx =

A

x tan x – log |sec x| x22+c\mathbf{-}\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{2}}\mathbf{+ c}

B

x tan x – log |sec x| +x22+c\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{2}}\mathbf{+ c}

C

x tan x + log |sec x| x22+c\mathbf{-}\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{2}}\mathbf{+ c}

D

x tan x + log |sec x| + x22+c\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{2}}\mathbf{+ c}

Answer

x tan x – log |sec x| x22+c\mathbf{-}\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{2}}\mathbf{+ c}

Explanation

Solution

I =dx = x\int_{}^{}xtan2x dx

use integration by parts