Solveeit Logo

Question

Question: \[\int_{}^{}{\mathbf{\tan}\mathbf{(}\mathbf{3x}\mathbf{-}\mathbf{5)}\mathbf{\sec}\mathbf{(}\mathbf{3...

tan(3x5)sec(3x5)dx=\int_{}^{}{\mathbf{\tan}\mathbf{(}\mathbf{3x}\mathbf{-}\mathbf{5)}\mathbf{\sec}\mathbf{(}\mathbf{3x}\mathbf{-}\mathbf{5)dx =}}

A

sec(3x5)+c\sec(3x - 5) + c

B

13sec(3x5)+c\frac{1}{3}\sec(3x - 5) + c

C

tan(3x5)+c\tan(3x - 5) + c

D

None of these

Answer

13sec(3x5)+c\frac{1}{3}\sec(3x - 5) + c

Explanation

Solution

secxtanxdx=secx+c\because\int_{}^{}{\sec x\tan xdx = \sec x + c}

sec(3x5)tan(3x5)dx\therefore\int_{}^{}{\sec(3x - 5)\tan(3x - 5)dx} =sec(3x5)3+C= \frac{\sec(3x - 5)}{3} + C