Solveeit Logo

Question

Question: \[\int_{}^{}{\mathbf{e}^{\mathbf{x}}\mathbf{(1}\mathbf{-}\mathbf{\cot}\mathbf{x}\mathbf{+}\mathbf{\c...

ex(1cotx+cot2x)dx\int_{}^{}{\mathbf{e}^{\mathbf{x}}\mathbf{(1}\mathbf{-}\mathbf{\cot}\mathbf{x}\mathbf{+}\mathbf{\cot}^{\mathbf{2}}\mathbf{x}}\mathbf{)dx}

A

excotx+ce^{x}\cot x + c

B

excosecx+ce^{x}\cos ⥂ ecx + c

C

excotx+c- e^{x}\cot x + c

D

excosecx+ce^{x}\cos ⥂ ecx + c

Answer

excotx+c- e^{x}\cot x + c

Explanation

Solution

ex(cosec2xcotx)dx=ex[cotx+cosec2x]=excotx+c\int_{}^{}{e^{x}(\cos ⥂ ec^{2}x - \cot x)dx} = \int_{}^{}{e^{x}\lbrack - \cot x + \text{cose}\text{c}^{2}x\rbrack} = - e^{x}\cot x + c