Solveeit Logo

Question

Question: \[\int_{}^{}{\mathbf{e}^{\mathbf{x}}\left( \frac{\mathbf{1}\mathbf{-}\mathbf{\sin}\mathbf{x}}{\mathb...

ex(1sinx1cosx)dx\int_{}^{}{\mathbf{e}^{\mathbf{x}}\left( \frac{\mathbf{1}\mathbf{-}\mathbf{\sin}\mathbf{x}}{\mathbf{1}\mathbf{-}\mathbf{\cos}\mathbf{x}} \right)\mathbf{dx}}

A

extanx2- e^{x}\tan\frac{x}{2}+ c

B

excotx2- e^{x}\cot\frac{x}{2}+ c

C

12extanx2- \frac{1}{2}e^{x}\tan\frac{x}{2}+ c

D

12excotx2\frac{1}{2}e^{x}\cot\frac{x}{2}+ c

Answer

excotx2- e^{x}\cot\frac{x}{2}+ c

Explanation

Solution

\because 1sinx1cosx=12sin2x22sinx2cosx22sin2x2=cosec2x2cotx2\frac{1 - \sin x}{1 - \cos x} = \frac{1}{2\sin^{2}\frac{x}{2}} - \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^{2}\frac{x}{2}} = \cos ⥂ ec^{2}\frac{x}{2} - \cot\frac{x}{2}

ex(1sinx1cosx)dx=ex(12cosec2x2cotx2)dx=excotx2+c\therefore\int_{}^{}{e^{x}\left( \frac{1 - \sin x}{1 - \cos x} \right)}dx = \int_{}^{}{e^{x}\left( \frac{1}{2}c\text{ose}\text{c}^{2}\frac{x}{2} - \cot\frac{x}{2} \right)}dx = - e^{x}\cot\frac{x}{2} + c