Question
Question: \[\int_{}^{}\left( \sqrt{\tan x} + \sqrt{\cot x} \right)dx\]...
∫(tanx+cotx)dx
A
2tan−1(2tanx−cotx)+c
B
2tan−1(2tanx+cotx)+c
C
tan−1(2tanx+cotx)+c
D
None of these
Answer
2tan−1(2tanx−cotx)+c
Explanation
Solution
I = ∫(tanx+cotx)dx
Put tanx=t2 ⇒sec2xdx=2tdt⇒ dx=1+t42tdt
I =∫(t+t1).1+t42t⥂dt
=2∫t2+t21+2−2(1+t21)dt =2∫(t−t1)2+(2)2(1+t21)dt
Put t−t1=p ⇒(1+t21)dt=dp
=∫p2+(2)2dp=22tan−12p+c =2tan−12(t−t1)+c
=2tan−1(2tanx−cotx)+c