Solveeit Logo

Question

Question: \[\int_{}^{}\left( \sqrt{\tan x} + \sqrt{\cot x} \right)dx\]...

(tanx+cotx)dx\int_{}^{}\left( \sqrt{\tan x} + \sqrt{\cot x} \right)dx

A

2tan1(tanxcotx2)+c\sqrt{2}\tan^{- 1}\left( \frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + c

B

2tan1(tanx+cotx2)+c\sqrt{2}\tan^{- 1}\left( \frac{\sqrt{\tan x} + \sqrt{\cot x}}{\sqrt{2}} \right) + c

C

tan1(tanx+cotx2)+c\tan^{- 1}\left( \frac{\sqrt{\tan x} + \sqrt{\cot x}}{\sqrt{2}} \right) + c

D

None of these

Answer

2tan1(tanxcotx2)+c\sqrt{2}\tan^{- 1}\left( \frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + c

Explanation

Solution

I = (tanx+cotx)dx\int_{}^{}{\left( \sqrt{\tan x} + \sqrt{\cot x} \right)dx}

Put tanx=t2\tan x = t^{2} sec2xdx=2tdt\Rightarrow \sec^{2}xdx = 2tdtdx=2t1+t4dtdx = \frac{2t}{1 + t^{4}}dt

I =(t+1t).2t1+t4dt= \int_{}^{}\left( t + \frac{1}{t} \right).\frac{2t}{1 + t^{4}} ⥂ dt

=2(1+1t2)t2+1t2+22dt= 2\int_{}^{}\frac{\left( 1 + \frac{1}{t^{2}} \right)}{t^{2} + \frac{1}{t^{2}} + 2 - 2}dt =2(1+1t2)dt(t1t)2+(2)2\mathbf{= 2}\int_{}^{}\frac{\left( \mathbf{1 +}\frac{\mathbf{1}}{\mathbf{t}^{\mathbf{2}}} \right)\mathbf{dt}}{\left( \mathbf{t}\mathbf{-}\frac{\mathbf{1}}{\mathbf{t}} \right)^{\mathbf{2}}\mathbf{+}\left( \sqrt{\mathbf{2}} \right)^{\mathbf{2}}}

Put t1t=pt - \frac{1}{t} = p (1+1t2)dt=dp\Rightarrow \left( 1 + \frac{1}{t^{2}} \right)dt = dp

=dpp2+(2)2=22tan1p2+c= \int_{}^{}\frac{dp}{p^{2} + \left( \sqrt{2} \right)^{2}} = \frac{2}{\sqrt{2}}\tan^{- 1}\frac{p}{\sqrt{2}} + c =2tan1(t1t)2+c= \sqrt{2}\tan^{- 1}\frac{\left( t - \frac{1}{t} \right)}{\sqrt{2}} + c

=2tan1(tanxcotx2)+c= \sqrt{2}\tan^{- 1}\left( \frac{\sqrt{\tan x} - \sqrt{\cot x}}{\sqrt{2}} \right) + c