Question
Question: \(\int_{}^{}\left\{ \log(\log x) + \frac{1}{(\log x)^{2}} \right\}\)dx is equal to –...
∫{log(logx)+(logx)21}dx is equal to –
A
x log (log x) – logxx+ c
B
x log x – logxx + c
C
xx log x – logxx+ c
D
x log x – logxx(logx) + c
Answer
x log (log x) – logxx+ c
Explanation
Solution
Let I = ∫{log(logx)+(logx)21}dx
\ I = ∫{logt+t21} et dt, where t = log x
= et dt
= ∫{logt+t1} et dt + et dt
= ∫et log t dt + .
dt + ∫et (–1/t) dt + ∫et
II I II I
= (log t) et – . et dt +
.
dt +
et
– . et dt +
dt + c
= et . log t – et + c = x log (log x) –
+ c.
Hence (1) is the correct answer