Solveeit Logo

Question

Question: \(\int_{}^{}\left\{ \log(\log x) + \frac{1}{(\log x)^{2}} \right\}\)dx is equal to –...

{log(logx)+1(logx)2}\int_{}^{}\left\{ \log(\log x) + \frac{1}{(\log x)^{2}} \right\}dx is equal to –

A

x log (log x) – xlogx\frac{x}{\log x}+ c

B

x log x – xlogx\frac{x}{\log x} + c

C

xx log x – xlogx\frac{x}{\log x}+ c

D

x log x – x(logx)logx\frac{x(\log x)}{\log x} + c

Answer

x log (log x) – xlogx\frac{x}{\log x}+ c

Explanation

Solution

Let I = {log(logx)+1(logx)2}\int \left\{ \log ( \log x ) + \frac { 1 } { ( \log x ) ^ { 2 } } \right\}dx

\ I = {logt+1t2}\int \left\{ \log \mathrm { t } + \frac { 1 } { \mathrm { t } ^ { 2 } } \right\} et dt, where t = log x

= et dt

= {logt+1t}\int \left\{ \log t + \frac { 1 } { t } \right\} et dt + et dt

= et\int \mathrm { e } ^ { \mathrm { t } } log t dt + . dt + et\int \mathrm { e } ^ { \mathrm { t } } (–1/t) dt + et\int \mathrm { e } ^ { \mathrm { t } }

II I II I

= (log t) et . et dt + . dt + et

. et dt + dt + c

= et . log t – et + c = x log (log x) – + c.

Hence (1) is the correct answer