Question
Question: \(\int_{}^{}\left( \frac{dx}{\sin x + \sec x} \right)\)is –...
∫(sinx+secxdx)is –
A
231lntanx−3tanx+3 + tan–1 (sin x + cos x) + c
B
231lnsinx−cosx−3sinx−cosx+3 + tan–1 (sin x + cos x) + c
C
231lntanx−3tanx+3 + tan–1 (sin x – cos x) + c
D
None of these
Answer
231lnsinx−cosx−3sinx−cosx+3 + tan–1 (sin x + cos x) + c
Explanation
Solution
I = ∫(sinx+secx)dx =
= 21 ∫1+sinxcosxcosx+sinxdx + 21 ∫1+sinxcosxcosx−sinxdx
Let sin x – cos x = t Let sin x + cos x = u
Ž (cos x + sin x) dx = dt Ž (cos x – sin x) dx = du
So I = 21 ∫1+(21−t2)dt +21
= ∫3−t2dt += 231ln t−3t+3 + tan–1 u + c
= 231ln sinx−cosx−3sinx−cosx+3+tan–1 (sin x + cos x) + c
\ (2) is correct