Solveeit Logo

Question

Question: \(\int_{}^{}{\lbrack f(x)g"(x) - f"(x)g(x)\rbrack}dx\) is equal to...

[f(x)g"(x)f"(x)g(x)]dx\int_{}^{}{\lbrack f(x)g"(x) - f"(x)g(x)\rbrack}dx is equal to

A

f(x)g(x)\frac{f(x)}{g'(x)}

B

f(x)g(x)f(x)g(x)f'(x)g(x) - f(x)g'(x)

C

f(x)g(x)f(x)g(x)f(x)g'(x) - f'(x)g(x)

D

f(x)g(x)+f(x)g(x)f(x)g'(x) + f'(x)g(x)

Answer

f(x)g(x)f(x)g(x)f(x)g'(x) - f'(x)g(x)

Explanation

Solution

[f(x)g"(x)f"(x)g(x)]dx=\int_{}^{}{\lbrack f(x)g"(x) - f"(x)g(x)\rbrack dx =} f(x)g"(x)dxf"(x)g(x)dx\int_{}^{}{f(x)g"(x)dx - \int_{}^{}{f"(x)g(x)dx}}

=[f(x)g(x)f(x)g(x)dx][g(x)f(x)g(x)f(x)dx]=f(x)g(x)f(x)g(x)= \lbrack f(x)g'(x) - \int_{}^{}{f'(x)g'(x)}dx\rbrack - \lbrack g(x)f'(x) - \int_{}^{}{g'(x)f'(x)dx\rbrack} = f(x)g'(x) - f'(x)g(x)