Question
Question: \(\int_{}^{}{\lbrack f(x)g"(x) - f"(x)g(x)\rbrack}dx\) is equal to...
∫[f(x)g"(x)−f"(x)g(x)]dx is equal to
A
g′(x)f(x)
B
f′(x)g(x)−f(x)g′(x)
C
f(x)g′(x)−f′(x)g(x)
D
f(x)g′(x)+f′(x)g(x)
Answer
f(x)g′(x)−f′(x)g(x)
Explanation
Solution
∫[f(x)g"(x)−f"(x)g(x)]dx= ∫f(x)g"(x)dx−∫f"(x)g(x)dx
=[f(x)g′(x)−∫f′(x)g′(x)dx]−[g(x)f′(x)−∫g′(x)f′(x)dx]=f(x)g′(x)−f′(x)g(x)