Question
Question: \(\int_{}^{\int}{x\sin}\)<!-- -->2x . cos 3x dx is –...
∫∫xsin2x . cos 3x dx is –
A
–10xcos5x+ 50sin5x + c
B
– 10xcos5x+50sin5x+2xcosx– 2sinx+ c
C
–10xcos5x+50sin5x–2xcosx+ 2sinx+ c
D
None of these
Answer
– 10xcos5x+50sin5x+2xcosx– 2sinx+ c
Explanation
Solution
I = ∫xsin 2x . cos 3x dx
= 21 ∫2x cos 3x . sin 2x dx = 21 ∫x (sin 5x – sin x) dx
= 21 ∫x sin 5x dx– 21 ∫xsin x dx …(1)
Let I1 =∫I︸xII︸sin5xdx = x (−5cos5x) –
∫1 . (−5cos5x)dx
= – 5xcos5x + 25sin5x
& I2 = ∫I︸xII︸sinxdx = x(–cos x) –∫1 . (–cos x) dx
= –x cos x + sin x
Put I1 & I2 in equation (1)
Ž I = –10xcos5x+50sin5x+2xcosx– 2sinx+ c