Solveeit Logo

Question

Question: \(\int_{}^{\int}{x\sin}\)<!-- -->2x . cos 3x dx is –...

xsin\int_{}^{\int}{x\sin}2x . cos 3x dx is –

A

xcos5x10\frac{x\cos 5x}{10}+ sin5x50\frac{\sin 5x}{50} + c

B

xcos5x10\frac{x\cos 5x}{10}+sin5x50\frac{\sin 5x}{50}+xcosx2\frac{x\cos x}{2}sinx2\frac{\sin x}{2}+ c

C

xcos5x10\frac{x\cos 5x}{10}+sin5x50\frac{\sin 5x}{50}xcosx2\frac{x\cos x}{2}+ sinx2\frac{\sin x}{2}+ c

D

None of these

Answer

xcos5x10\frac{x\cos 5x}{10}+sin5x50\frac{\sin 5x}{50}+xcosx2\frac{x\cos x}{2}sinx2\frac{\sin x}{2}+ c

Explanation

Solution

I = x\int_{}^{}xsin 2x . cos 3x dx

= 12\frac { 1 } { 2 } 2x\int_{}^{}{2x} cos 3x . sin 2x dx = 12\frac { 1 } { 2 } x\int_{}^{}x (sin 5x – sin x) dx

= 12\frac { 1 } { 2 } x\int_{}^{}x sin 5x dx– 12\frac { 1 } { 2 } x\int_{}^{}xsin x dx …(1)

Let I1 =xIsin5xII\int_{}^{}{\underset{I}{\overset{x}{︸}}\underset{II}{\overset{\sin 5x}{︸}}}dx = x (cos5x5)\left( - \frac{\cos 5x}{5} \right)

1\int_{}^{}1 . (cos5x5)\left( - \frac{\cos 5x}{5} \right)dx

= – xcos5x5\frac{x\cos 5x}{5} + sin5x25\frac{\sin 5x}{25}

& I2 = xIsinxII\int_{}^{}{\underset{I}{\overset{x}{︸}}\underset{II}{\overset{\sin x}{︸}}}dx = x(–cos x) –1\int_{}^{}1 . (–cos x) dx

= –x cos x + sin x

Put I1 & I2 in equation (1)

Ž I = –xcos5x10\frac{x\cos 5x}{10}+sin5x50\frac{\sin 5x}{50}+xcosx2\frac{x\cos x}{2}sinx2\frac{\sin x}{2}+ c