Solveeit Logo

Question

Question: \[\int_{}^{}\frac{x^{5}}{\sqrt{1 + x^{3}}}dx\]...

x51+x3dx\int_{}^{}\frac{x^{5}}{\sqrt{1 + x^{3}}}dx

A

29(1+x3)3/2+c\frac{2}{9}(1 + x^{3})^{3/2} + c

B

29(1+x3)3/2+23(1+x3)1/2+c\frac{2}{9}(1 + x^{3})^{3/2} + \frac{2}{3}(1 + x^{3})^{1/2} + c

C

29(1+x3)3/223(1+x3)1/2+C\frac{2}{9}(1 + x^{3})^{3/2} - \frac{2}{3}(1 + x^{3})^{1/2} + C

D

None of these

Answer

29(1+x3)3/223(1+x3)1/2+C\frac{2}{9}(1 + x^{3})^{3/2} - \frac{2}{3}(1 + x^{3})^{1/2} + C

Explanation

Solution

x51+x3dx=x3.x21+x3dx\int_{}^{}{\frac{x^{5}}{\sqrt{1 + x^{3}}}dx} = \int_{}^{}{\frac{x^{3}.x^{2}}{\sqrt{1 + x^{3}}}dx}. Put 1+x3=t1 + x^{3} = t 3x2dx=dt\Rightarrow 3x^{2}dx = dt x2dx=dt3\Rightarrow x^{2}dx = \frac{dt}{3}

=13(t1)tdt=13(t1t)dt= \frac{1}{3}\int_{}^{}{\frac{(t - 1)}{\sqrt{t}}dt = \frac{1}{3}\int_{}^{}\left( \sqrt{t} - \frac{1}{\sqrt{t}} \right)}dt =13[t3/23/22t]+c= \frac{1}{3}\left\lbrack \frac{t^{3/2}}{3/2} - 2\sqrt{t} \right\rbrack + c

=29(1+x3)3/223(1+x3)1/2+c= \frac{2}{9}(1 + x^{3})^{3/2} - \frac{2}{3}(1 + x^{3})^{1/2} + c