Solveeit Logo

Question

Question: \(\int_{}^{}\frac{x^{3} + 3x + 2}{(x^{2} + 1)^{2}(x + 1)}\)dx = \(\frac{1}{4}\) log (x<sup>2</sup> +...

x3+3x+2(x2+1)2(x+1)\int_{}^{}\frac{x^{3} + 3x + 2}{(x^{2} + 1)^{2}(x + 1)}dx = 14\frac{1}{4} log (x2 + 1) + xx2+1\frac{x}{x^{2} + 1} + 32\frac{3}{2} tan–1 x – A. Then A is equal to –

A

32\frac{3}{2}log |x + 1| + c

B

23\frac{2}{3}log |x + 1| + c

C

12\frac{1}{2}log |x + 1| + c

D

12\frac{1}{2}log |x2 + 1| + c

Answer

12\frac{1}{2}log |x + 1| + c

Explanation

Solution

Let I = x3+3x+2(x2+1)2(x+1)\int_{}^{}\frac{x^{3} + 3x + 2}{(x^{2} + 1)^{2}(x + 1)}dx, then

I = dx

= x(x2+1)(x+1)\int \frac { x } { \left( x ^ { 2 } + 1 \right) ( x + 1 ) } dx + 2 1(x2+1)2\int_{}^{}\frac{1}{(x^{2} + 1)^{2}} dx

= I1 + 2I2, where

I1 = x(x2+1)(x+1)\int_{}^{}\frac{x}{(x^{2} + 1)(x + 1)}dx and I2 = 1(x2+1)2\int_{}^{}\frac{1}{(x^{2} + 1)^{2}}dx

Now, I1 = x(x2+1)(x+1)\int_{}^{}\frac{x}{(x^{2} + 1)(x + 1)}dx

= 12\int \frac { 1 } { 2 } (x+1x2+11x+1)\left( \frac{x + 1}{x^{2} + 1} - \frac{1}{x + 1} \right)dx [Using partial fractions]

= 12\frac { 1 } { 2 } xx2+1\int_{}^{}\frac{x}{x^{2} + 1}dx +12\frac { 1 } { 2 } 1x2+1\int_{}^{}\frac{1}{x^{2} + 1}dx ––12\frac { 1 } { 2 } 1x+1\int_{}^{}\frac{1}{x + 1}dx

= 14\frac{1}{4}log (x2 + 1) +12\frac{1}{2}tan–1 x – 12\frac{1}{2}log |x + 1| + c1

and, I2 = 1(x2+1)2\int_{}^{}\frac{1}{(x^{2} + 1)^{2}}dx

= 12\frac{1}{2} x(x2+1)\frac{x}{(x^{2} + 1)}+ 12\frac{1}{2}tan–1 x + c2

Hence, I = I1 + 2I2

= 14\frac{1}{4}log (x2 + 1) + xx2+1\frac{x}{x^{2} + 1} + 32\frac{3}{2} tan–1 x – 12\frac{1}{2}log |x + 1| + c.

Hence (3) is the correct answer.