Question
Question: \(\int_{}^{}\frac{x^{3} + 3x + 2}{(x^{2} + 1)^{2}(x + 1)}\)dx = \(\frac{1}{4}\) log (x<sup>2</sup> +...
∫(x2+1)2(x+1)x3+3x+2dx = 41 log (x2 + 1) + x2+1x + 23 tan–1 x – A. Then A is equal to –
A
23log |x + 1| + c
B
32log |x + 1| + c
C
21log |x + 1| + c
D
21log |x2 + 1| + c
Answer
21log |x + 1| + c
Explanation
Solution
Let I = ∫(x2+1)2(x+1)x3+3x+2dx, then
I = dx
= ∫(x2+1)(x+1)x dx + 2 ∫(x2+1)21 dx
= I1 + 2I2, where
I1 = ∫(x2+1)(x+1)xdx and I2 = ∫(x2+1)21dx
Now, I1 = ∫(x2+1)(x+1)xdx
= ∫21 (x2+1x+1−x+11)dx [Using partial fractions]
= 21 ∫x2+1xdx +21 ∫x2+11dx ––21 ∫x+11dx
= 41log (x2 + 1) +21tan–1 x – 21log |x + 1| + c1
and, I2 = ∫(x2+1)21dx
= 21 (x2+1)x+ 21tan–1 x + c2
Hence, I = I1 + 2I2
= 41log (x2 + 1) + x2+1x + 23 tan–1 x – 21log |x + 1| + c.
Hence (3) is the correct answer.