Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{x^{2}\tan^{- 1}x^{3}}{1 + x^{6}}dx}\) is equal to...

x2tan1x31+x6dx\int_{}^{}{\frac{x^{2}\tan^{- 1}x^{3}}{1 + x^{6}}dx} is equal to

A

tan1(x3)+c\tan^{- 1}(x^{3}) + c

B

16(tan1x3)2+c\frac{1}{6}(\tan^{- 1}x^{3})^{2} + c

C

12(tan1x3)2+c- \frac{1}{2}(\tan^{- 1}x^{3})^{2} + c

D

12(tan1x3)2+C\frac{1}{2}(\tan^{- 1}x^{3})^{2} + C

Answer

16(tan1x3)2+c\frac{1}{6}(\tan^{- 1}x^{3})^{2} + c

Explanation

Solution

Put tan1x3=t\tan^{- 1}x^{3} = t

11+x6.3x2dx=dt\frac{1}{1 + x^{6}}.3x^{2}dx = dt x21+x6dx=dt3\Rightarrow \frac{x^{2}}{1 + x^{6}}dx = \frac{dt}{3} \mathbf{\Rightarrow} 13tdt\frac{1}{3}\int_{}^{}{tdt}

=13.t22=(tan1x3)26+c= \frac{1}{3}.\frac{t^{2}}{2} = \frac{(\tan^{- 1}x^{3})^{2}}{6} + c