Question
Question: \[\int_{}^{}{\frac{x^{2}dx}{(x\sin x + \cos x)^{2}} =}\]...
∫(xsinx+cosx)2x2dx=
A
xsinx+cosxsinx+cosx
B
xsinx+cosxxsinx−cosx
C
xsinx+cosxsinx−xcosx
D
None of these
Answer
xsinx+cosxsinx−xcosx
Explanation
Solution
Differentiation of xsinx+cosx is xcosx. Then,
I=∫(xsinx+cosx)2x2dx=∫(xsinx+cosx)2xcosx.cosxxdx
Integrate by parts, [∵∫t21dt=−t1]
∴I=(xsinx+cosx)−1.(cosxx)+∫(xsinx+cosx)1.cos2xcosx.1−x(−sinx)dx
⇒I=xsinx+cosx−1.cosxx+∫sec2xdx
I=xsinx+cosx−1.cosxx+cosxsinx
⇒ I=(xsinx+cosx)cosx−x+xsin2x+sinxcosx
⇒I=(xsinx+cosx)cosxsinxcosx−x(1−sin2x)=xsinx+cosxsinx−xcosx