Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{x^{2}dx}{(x\sin x + \cos x)^{2}} =}\]...

x2dx(xsinx+cosx)2=\int_{}^{}{\frac{x^{2}dx}{(x\sin x + \cos x)^{2}} =}

A

sinx+cosxxsinx+cosx\frac{\sin x + \cos x}{x\sin x + \cos x}

B

xsinxcosxxsinx+cosx\frac{x\sin x - \cos x}{x\sin x + \cos x}

C

sinxxcosxxsinx+cosx\frac{\sin x - x\cos x}{x\sin x + \cos x}

D

None of these

Answer

sinxxcosxxsinx+cosx\frac{\sin x - x\cos x}{x\sin x + \cos x}

Explanation

Solution

Differentiation of xsinx+cosxx\sin x + \cos x is xcosx.x\cos x. Then,

I=x2dx(xsinx+cosx)2=xcosx(xsinx+cosx)2.xcosxdxI = \int_{}^{}\frac{x^{2}dx}{(x\sin x + \cos x)^{2}} = \int_{}^{}\frac{x\cos x}{(x\sin x + \cos x)^{2}}.\frac{x}{\cos x}dx

Integrate by parts, [1t2dt=1t]\left\lbrack \because\int_{}^{}{\frac{1}{t^{2}}dt = - \frac{1}{t}} \right\rbrack

I=1(xsinx+cosx).(xcosx)+1(xsinx+cosx).cosx.1x(sinx)cos2xdx\therefore I = \frac{- 1}{(x\sin x + \cos x)}.\left( \frac{x}{\cos x} \right) + \int_{}^{}{\frac{1}{(x\sin x + \cos x)}.\frac{\cos x.1 - x( - \sin x)}{\cos^{2}x}dx}

I=1xsinx+cosx.xcosx+sec2xdx\Rightarrow I = \frac{- 1}{x\sin x + \cos x}.\frac{x}{\cos x} + \int_{}^{}{\sec^{2}xdx}

I=1xsinx+cosx.xcosx+sinxcosxI = \frac{- 1}{x\sin x + \cos x}.\frac{x}{\cos x} + \frac{\sin x}{\cos x}

\Rightarrow I=x+xsin2x+sinxcosx(xsinx+cosx)cosxI = \frac{- x + x\sin^{2}x + \sin x\cos x}{(x\sin x + \cos x)\cos x}

I=sinxcosxx(1sin2x)(xsinx+cosx)cosx=sinxxcosxxsinx+cosx\Rightarrow I = \frac{\sin x\cos x - x(1 - \sin^{2}x)}{(x\sin x + \cos x)\cos x} = \frac{\sin x - x\cos x}{x\sin x + \cos x}