Solveeit Logo

Question

Question: \(\int_{}^{}\frac{x^{2} + x–6}{(x–2)(x–1)}dx\) =...

x2+x6(x2)(x1)dx\int_{}^{}\frac{x^{2} + x–6}{(x–2)(x–1)}dx =

A

x + 2log(x – 1) + c

B

2x + 2log(x – 1) + c

C

x + 4log(1 – x) + c

D

x + 4log(x – 1) + c

Answer

x + 4log(x – 1) + c

Explanation

Solution

x2+x6(x2)(x1)\int \frac { x ^ { 2 } + x - 6 } { ( x - 2 ) ( x - 1 ) }dx = (x+3)(x2)(x2)(x1)\int_{}^{}\frac{(x + 3)(x–2)}{(x–2)(x–1)} dx

=

= = x + 4log (x – 1) + c