Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{x^{2} - 1}{x^{4} + x^{2} + 1}dx =}\]...

x21x4+x2+1dx=\int_{}^{}{\frac{x^{2} - 1}{x^{4} + x^{2} + 1}dx =}

A

12log[x2+x+1x2x+1]+c\frac{1}{2}\log\left\lbrack \frac{x^{2} + x + 1}{x^{2} - x + 1} \right\rbrack + c

B

12log[x2x1x2+x+1]+c\frac{1}{2}\log\left\lbrack \frac{x^{2} - x - 1}{x^{2} + x + 1} \right\rbrack + c

C

log[x2x+1x2+x+1]+c\log\left\lbrack \frac{x^{2} - x + 1}{x^{2} + x + 1} \right\rbrack + c

D

12log[x2x+1x2+x+1]+c\frac{1}{2}\log\left\lbrack \frac{x^{2} - x + 1}{x^{2} + x + 1} \right\rbrack + c

Answer

12log[x2x+1x2+x+1]+c\frac{1}{2}\log\left\lbrack \frac{x^{2} - x + 1}{x^{2} + x + 1} \right\rbrack + c

Explanation

Solution

11x2x2+1+1x2dx\int_{}^{}{\frac{\mathbf{1 -}\frac{\mathbf{1}}{\mathbf{x}^{\mathbf{2}}}}{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1 +}\frac{\mathbf{1}}{\mathbf{x}^{\mathbf{2}}}}\mathbf{dx}} =11x2(x+1x)21dx=12logx+1x1x+1x+1+c\mathbf{=}\int_{}^{}\frac{\mathbf{1 -}\frac{\mathbf{1}}{\mathbf{x}^{\mathbf{2}}}}{\left( \mathbf{x +}\frac{\mathbf{1}}{\mathbf{x}} \right)^{\mathbf{2}}\mathbf{- 1}}\mathbf{dx =}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{\log}\left| \frac{\mathbf{x +}\frac{\mathbf{1}}{\mathbf{x}}\mathbf{- 1}}{\mathbf{x +}\frac{\mathbf{1}}{\mathbf{x}}\mathbf{+ 1}} \right|\mathbf{+ c} =12logx2+1xx2+1+x+c\mathbf{=}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{\log}\left| \frac{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1 - x}}{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1 + x}} \right|\mathbf{+ c} =12logx2x+1x2+x+1+c\mathbf{=}\frac{\mathbf{1}}{\mathbf{2}}\mathbf{\log}\left| \frac{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{x + 1}}{\mathbf{x}^{\mathbf{2}}\mathbf{+ x + 1}} \right|\mathbf{+ c}