Solveeit Logo

Question

Question: \(\int_{}^{}\frac{x + \sqrt[3]{x^{2}} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})}\)dx equals:...

x+x23+x6x(1+x3)\int_{}^{}\frac{x + \sqrt[3]{x^{2}} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})}dx equals:

A

32\frac{3}{2}x2/3 + 6 tan–1x6\sqrt[6]{x}+ c

B

32\frac{3}{2}x2/3 + 6 tan–1x\sqrt{x} + c

C

32\frac{3}{2}x2/3 + tan–1 x + c

D

32\frac{3}{2}x2/3 + 6 tan–1 x1/3 + c

Answer

32\frac{3}{2}x2/3 + 6 tan–1x6\sqrt[6]{x}+ c

Explanation

Solution

Let t6 = x

then 6t5 dt = dx

I = = 6 t5+t3+1(1+t2)\int_{}^{}\frac{t^{5} + t^{3} + 1}{(1 + t^{2})}dt

= 6 t3(t2+1)+1(1+t2)\int_{}^{}\frac{t^{3}(t^{2} + 1) + 1}{(1 + t^{2})}dt

= 6 t3dt+6\int \mathrm { t } ^ { 3 } \mathrm { dt } + 6 11+t2\int_{}^{}\frac{1}{1 + t^{2}}dt

= + 6 tan–1 t = 32\frac{3}{2}t4 + 6 tan–1 t + c

= 32\frac{3}{2}x2/3 + 6 tan–1 x6\sqrt[6]{x}+ c