Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{x + \sin x}{1 + \cos x}dx =}\]...

x+sinx1+cosxdx=\int_{}^{}{\frac{x + \sin x}{1 + \cos x}dx =}

A

xtanx/2+c- x\tan x/2 + c

B

xtanx/2+cx\tan x/2 + c

C

xtanx+cx\tan x + c

D

12xtanx+c\frac{1}{2}x\tan x + c

Answer

xtanx/2+cx\tan x/2 + c

Explanation

Solution

x+sinx1+cosxdx=12xsec2x2dx+tanx2dx=12xtanx/21/2tanx2dx+tanx2dx=xtanx2+c\int_{}^{}\frac{x + \sin x}{1 + \cos x}dx = \frac{1}{2}\int_{}^{}{x\sec^{2}\frac{x}{2}dx +}\int_{}^{}{\tan\frac{x}{2}dx} = \frac{1}{2}\frac{x\tan x/2}{1/2} - \int_{}^{}{\tan\frac{x}{2}dx + \int_{}^{}{\tan\frac{x}{2}dx = x\tan\frac{x}{2} + c}}

Trick : By inspection, ddx{xtanx2+c}\frac{d}{dx}\left\{ x\tan\frac{x}{2} + c \right\}

=xsec2x2+tanx2=12[xcos2x/2+2sinx/2cosx/2]=x+sinx1+cosx= x\sec^{2}\frac{x}{2} + \tan\frac{x}{2} = \frac{1}{2}\left\lbrack \frac{x}{\cos^{2}x/2} + \frac{2\sin x/2}{\cos x/2} \right\rbrack = \frac{x + \sin x}{1 + \cos x}

Hence the result.