Solveeit Logo

Question

Question: \(\int_{}^{}\frac{(x + 3)e^{x}}{(x + 4)^{2}}dx\) is equal to...

(x+3)ex(x+4)2dx\int_{}^{}\frac{(x + 3)e^{x}}{(x + 4)^{2}}dx is equal to

A

exx+4+c\frac{e^{x}}{x + 4} + c

B

exx+3+c\frac{e^{x}}{x + 3} + c

C

1(x+4)2+c\frac{1}{(x + 4)^{2}} + c

D

ex(x+4)2+c\frac{e^{x}}{(x + 4)^{2}} + c

Answer

exx+4+c\frac{e^{x}}{x + 4} + c

Explanation

Solution

(x+3)ex(x+4)2dx=(x+41)ex(x+4)2dx=(x+4)ex(x+4)2dxex(x+4)2dx\int_{}^{}\frac{(x + 3)e^{x}}{(x + 4)^{2}}dx = \int_{}^{}\frac{(x + 4 - 1)e^{x}}{(x + 4)^{2}}dx = \int_{}^{}\frac{(x + 4)e^{x}}{(x + 4)^{2}}dx - \int_{}^{}{\frac{e^{x}}{(x + 4)^{2}}dx} =ex(x+4)dxex(x+4)2dx= \int_{}^{}{\frac{e^{x}}{(x + 4)}dx - \int_{}^{}{\frac{e^{x}}{(x + 4)^{2}}dx}}

=[ex(x+4)+ex(x+4)2dx]ex(x+4)2dx+c= \left\lbrack \frac{e^{x}}{(x + 4)^{}} + \int_{}^{}{\frac{e^{x}}{(x + 4)^{2}}dx} \right\rbrack - \int_{}^{}{\frac{e^{x}}{(x + 4)^{2}}dx + c} =exx+4+c= \frac{e^{x}}{x + 4} + c