Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\tan x}{\sqrt{1 - \tan^{2}x}}dx =}\]...

tanx1tan2xdx=\int_{}^{}{\frac{\tan x}{\sqrt{1 - \tan^{2}x}}dx =}

A

cosh1(2cosx)+c\cos h^{- 1}(\sqrt{2}\cos x) + c

B

cosh1(2cosx)+c- \cos h^{- 1}(\sqrt{2}\cos x) + c

C

12cos1(2cosx)+c\frac{1}{\sqrt{2}}\cos^{- 1}(\sqrt{2}\cos x) + c

D

12cosh1(2cosx)+c\frac{- 1}{\sqrt{2}}\cos h^{- 1}(\sqrt{2}\cos x) + c

Answer

12cosh1(2cosx)+c\frac{- 1}{\sqrt{2}}\cos h^{- 1}(\sqrt{2}\cos x) + c

Explanation

Solution

tanxdx1tan2x=sinxdxcos2xsin2x=sinxdx2cos2x1\int_{}^{}{\frac{\tan xdx}{\sqrt{1 - \tan^{2}x}} = \int_{}^{}{\frac{\sin xdx}{\sqrt{\cos^{2}x - \sin^{2}x}} = \int_{}^{}\frac{\sin xdx}{\sqrt{2\cos^{2}x - 1}}}}Put 2cosx=t2sinxdx=dt\sqrt{2}\cos x = t \Rightarrow - \sqrt{2}\sin xdx = dt

I=12dtt21=12cosh1(2cosx+c)I = \frac{- 1}{\sqrt{2}}\int_{}^{}\frac{dt}{\sqrt{t^{2} - 1}} = \frac{- 1}{\sqrt{2}}\cos h^{- 1}(\sqrt{2}\cos x + c).