Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\sqrt{\tan x}}{\sin x.\cos x}\)dx...

tanxsinx.cosx\int_{}^{}\frac{\sqrt{\tan x}}{\sin x.\cos x}dx

A

2secx+c2\sqrt{\sec x} + c

B

2tanx+c2\sqrt{\tan x} + c

C

2tanx+c\frac{2}{\sqrt{\tan x}} + c

D

2secx\frac{2}{\sqrt{\sec x}}+ c

Answer

2tanx+c2\sqrt{\tan x} + c

Explanation

Solution

tanxsinx.cosxdx\int_{}^{}{\frac{\sqrt{\tan x}}{\sin x.\cos x}dx} =tanxtanx.sinxcosxdx= \int_{}^{}{\frac{\tan x}{\sqrt{\tan x}.\sin x\cos x}dx}

=sinx.secxtanxsinxcosxdx= \frac{\sin x.\sec x}{\sqrt{\tan x}\sin x\cos x}dx =sec2xtanxdx= \int_{}^{}{\frac{\sec^{2}x}{\sqrt{\tan x}}dx}

Put t=tanxt = \tan x dt=sec2xdx,\Rightarrow dt = \sec^{2}xdx, then it reduces to, 1tdt=2t1/2+c=2tanx+C\int_{}^{}{\frac{1}{\sqrt{t}}dt = 2t^{1/2} + c} = 2\sqrt{\tan x} + C