Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\sqrt{\cot x}}{\sin x\cos x}\)dx = P \(\sqrt{\cot x}\) + Q, then P equals to :...

cotxsinxcosx\int_{}^{}\frac{\sqrt{\cot x}}{\sin x\cos x}dx = P cotx\sqrt{\cot x} + Q, then P equals to :

A

1

B

2

C

–1

D

–2

Answer

–2

Explanation

Solution

divide by sin2x

.cosec2x dx

. (– dt) (t = cot x)

= –2 + c

= – 2 cotx\sqrt { \cot x } + c