Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\sqrt{1–x^{2}} + \sqrt{1 + x^{2}}}{\sqrt{1–x^{4}}}\) dx =...

1x2+1+x21x4\int_{}^{}\frac{\sqrt{1–x^{2}} + \sqrt{1 + x^{2}}}{\sqrt{1–x^{4}}} dx =

A

log(x+1+x2)(x + \sqrt{1 + x^{2}}) + sin–1 x + c

B

sin h–1 x – sin–1 x + c

C

cos–1 x – sin–1 x + c

D

tan–1 x + sin–1 x + c

Answer

log(x+1+x2)(x + \sqrt{1 + x^{2}}) + sin–1 x + c

Explanation

Solution

1x21x4+1+x21x4dx\int \frac { \sqrt { 1 - x ^ { 2 } } } { \sqrt { 1 - x ^ { 4 } } } + \frac { \sqrt { 1 + x ^ { 2 } } } { \sqrt { 1 - x ^ { 4 } } } d x= dx1+x2+dx1x2\int_{}^{}\frac{dx}{\sqrt{1 + x^{2}}} + \int_{}^{}\frac{dx}{\sqrt{1–x^{2}}}