Solveeit Logo

Question

Question: \(\int_{}^{}\frac{(\sin\theta + \cos\theta)}{\sqrt{\sin 2\theta}}\)dq is equal to –...

(sinθ+cosθ)sin2θ\int_{}^{}\frac{(\sin\theta + \cos\theta)}{\sqrt{\sin 2\theta}}dq is equal to –

A

log | cos q – sin q + sin2θ+c\sqrt{\sin 2\theta}| + c

B

log | sin q – cos q + sin2θ+c\sqrt{\sin 2\theta}| + c

C

sin–1 (sin q – cos q) + c

D

sin–1 (sin q + cos q) + c

Answer

log | cos q – sin q + sin2θ+c\sqrt{\sin 2\theta}| + c

Explanation

Solution

In =

=In

= tann2xsec2xdxIn2\int \tan ^ { n - 2 } x \sec ^ { 2 } x d x - I _ { n - 2 } tan x = t sec2 xdx

= dt Ž

Put n = 6I6 + I4 = tan5x/5 Both state. are correct and correct expla.