Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\sin^{4}x}{\cos^{8}x}\) dx is equal to –...

sin4xcos8x\int_{}^{}\frac{\sin^{4}x}{\cos^{8}x} dx is equal to –

A

(1+tan5x)5+tan5x7\frac{(1 + \tan^{5}x)}{5} + \frac{\tan^{5}x}{7} + C

B

tan5x5+tan7x7+C\frac{\tan^{5}x}{5} + \frac{\tan^{7}x}{7} + C

C

tan7x5+tan5x7\frac{\tan^{7}x}{5} + \frac{\tan^{5}x}{7} + C

D

None of these

Answer

tan5x5+tan7x7+C\frac{\tan^{5}x}{5} + \frac{\tan^{7}x}{7} + C

Explanation

Solution

sin4xcos4xcos8xcos4x\int \frac { \frac { \sin ^ { 4 } x } { \cos ^ { 4 } x } } { \frac { \cos ^ { 8 } x } { \cos ^ { 4 } x } } .dx = ̣ tan4x. sec4x dx

= ̣ tan4 x (1 + tan2x)sec2x dx = ̣ tan4x.

(1 + tan2x) d(tanx) = ̣ t4(1 + t2)= t55\frac { \mathrm { t } ^ { 5 } } { 5 } + t77\frac { \mathrm { t } ^ { 7 } } { 7 } + C