Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\sin x}{\sin 4x}dx\) = A log \(\left| \frac{1 + \sin x}{1 - \sin x} \right|\) + B ...

sinxsin4xdx\int_{}^{}\frac{\sin x}{\sin 4x}dx = A log 1+sinx1sinx\left| \frac{1 + \sin x}{1 - \sin x} \right| + B log 1+2sinx12sinx+C\left| \frac{1 + \sqrt{2}\sin x}{1 - \sqrt{2}\sin x} \right| + C

A

A = 18\frac{1}{8}, B = 142\frac{1}{4\sqrt{2}}

B

A = – 18\frac{1}{8}, B = – 142\frac{1}{4\sqrt{2}}

C

A = –18\frac{1}{8}, B = 142\frac{1}{4\sqrt{2}}

D

A = 18\frac{1}{8}, B = – 142\frac{1}{4\sqrt{2}}

Answer

A = –18\frac{1}{8}, B = 142\frac{1}{4\sqrt{2}}

Explanation

Solution

=

sinxdx4cosxsinxcos2x\int \frac { \sin x d x } { 4 \cos x \sin x \cos 2 x }= 14cosxdxcos2xcos2x\frac { 1 } { 4 } \int \frac { \cos x d x } { \cos ^ { 2 } x \cos 2 x }