Question
Question: \(\int_{}^{}\frac{\sin x}{\sin 4x}dx\) = A log \(\left| \frac{1 + \sin x}{1 - \sin x} \right|\) + B ...
∫sin4xsinxdx = A log 1−sinx1+sinx + B log 1−2sinx1+2sinx+C
A
A = 81, B = 421
B
A = – 81, B = – 421
C
A = –81, B = 421
D
A = 81, B = – 421
Answer
A = –81, B = 421
Explanation
Solution
=
∫4cosxsinxcos2xsinxdx= 41∫cos2xcos2xcosxdx