Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\sin x\cos x}{a\cos^{2}x + b\sin^{2}x}dx =}\]...

sinxcosxacos2x+bsin2xdx=\int_{}^{}{\frac{\sin x\cos x}{a\cos^{2}x + b\sin^{2}x}dx =}

A

12(ba)log(acos2x+bsin2x)+c\frac{1}{2(b - a)}\log(a\cos^{2}x + b\sin^{2}x) + c

B

1balog(acos2x+bsin2x)+c\frac{1}{b - a}\log(a\cos^{2}x + b\sin^{2}x) + c

C

12log(acos2x+bsin2x)+c\frac{1}{2}\log(a\cos^{2}x + b\sin^{2}x) + c

D

None of these

Answer

1balog(acos2x+bsin2x)+c\frac{1}{b - a}\log(a\cos^{2}x + b\sin^{2}x) + c

Explanation

Solution

Put

1+sinx26mudx=\int_{}^{}{\sqrt{1 + \sin\frac{x}{2}}\mspace{6mu} dx =}

Then 14(cosx4sinx4)+c\frac{1}{4}\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right) + c

4(cosx4sinx4)+c4\left( \cos\frac{x}{4} - \sin\frac{x}{4} \right) + c