Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\sin 2x}{\sin^{4}x + \cos^{4}x}\) dx =...

sin2xsin4x+cos4x\int_{}^{}\frac{\sin 2x}{\sin^{4}x + \cos^{4}x} dx =

A

cot–1(tan2x) + c

B

tan–1(tan2x) +c

C

cot–1(cot2x) + c

D

tan–1 (cot2x) + cq

Answer

tan–1(tan2x) +c

Explanation

Solution

2sinxcosxsin4x+cos4x\int \frac { 2 \sin x \cos x } { \sin ^ { 4 } x + \cos ^ { 4 } x } dx = 2tanxsec2x1+tan4x\int \frac { 2 \tan x \sec ^ { 2 } x } { 1 + \tan ^ { 4 } x } dx

Put tan2x = t ̃ 2tanx. sec2x dx = dt

\ = tan–1(t) + c = tan–1(tan2x) + c