Question
Question: \(\int_{}^{}{\frac{\sin 2x}{a^{2}\sin^{2}x + b^{2}\cos^{2}x}dx}\) is equal to...
∫a2sin2x+b2cos2xsin2xdx is equal to
A
b2−a21log(a2sin2x+b2cos2x)+c
B
a2−b21log(a2sin2x+b2cos2x)+c
C
log(a2sin2x−b2cos2x)+c
D
None of these
Answer
a2−b21log(a2sin2x+b2cos2x)+c
Explanation
Solution
Put a2sin2x+b2cos2x=t
⇒ (a2.2sinxcosx−b2.2cosxsinx)dx=dt
⇒ sin2x(a2−b2)dx=dt
∫a2sin2x+b2cos2xsin2xdx=(a2−b2)1 ∫tdt=a2−b21logt+c=a2−b21log(a2sin2x+b2cos2x)+c