Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{\sin 2x}{a^{2}\sin^{2}x + b^{2}\cos^{2}x}dx}\) is equal to...

sin2xa2sin2x+b2cos2xdx\int_{}^{}{\frac{\sin 2x}{a^{2}\sin^{2}x + b^{2}\cos^{2}x}dx} is equal to

A

1b2a2log(a2sin2x+b2cos2x)+c\frac{1}{b^{2} - a^{2}}\log(a^{2}\sin^{2}x + b^{2}\cos^{2}x) + c

B

1a2b2log(a2sin2x+b2cos2x)+c\frac{1}{a^{2} - b^{2}}\log(a^{2}\sin^{2}x + b^{2}\cos^{2}x) + c

C

log(a2sin2xb2cos2x)+c\log(a^{2}\sin^{2}x - b^{2}\cos^{2}x) + c

D

None of these

Answer

1a2b2log(a2sin2x+b2cos2x)+c\frac{1}{a^{2} - b^{2}}\log(a^{2}\sin^{2}x + b^{2}\cos^{2}x) + c

Explanation

Solution

Put a2sin2x+b2cos2x=ta^{2}\sin^{2}x + b^{2}\cos^{2}x = t

(a2.2sinxcosxb2.2cosxsinx)dx=dt(a^{2}.2\sin x\cos x - b^{2}.2\cos x\sin x)dx = dt

sin2x(a2b2)dx=dt\sin 2x(a^{2} - b^{2})dx = dt

sin2xa2sin2x+b2cos2xdx=1(a2b2)\int \frac { \sin 2 x } { a ^ { 2 } \sin ^ { 2 } x + b ^ { 2 } \cos ^ { 2 } x } d x = \frac { 1 } { \left( a ^ { 2 } - b ^ { 2 } \right) } dtt=1a2b2logt+c=1a2b2log(a2sin2x+b2cos2x)+c\int_{}^{}{\frac{dt}{t} = \frac{1}{a^{2} - b^{2}}\log t + c} = \frac{1}{a^{2} - b^{2}}\log(a^{2}\sin^{2}x + b^{2}\cos^{2}x) + c