Question
Question: \(\int_{}^{}{\frac{\sin^{- 1}\sqrt{x} - \cos^{- 1}\sqrt{x}}{\sin^{- 1}\sqrt{x} + \cos^{- 1}\sqrt{x}}...
∫sin−1x+cos−1xsin−1x−cos−1xdx is equal to
A
π2[(2x−1)sin−1x+x(1−x)]−x+c
B
π2[(2x−1)sin−1x−x(1−x)]+x+c
C
2π[(2x−1)sin−1x+x(1−x)]−x+c
D
None of these
Answer
π2[(2x−1)sin−1x+x(1−x)]−x+c
Explanation
Solution
∫sin−1x+cos−1xsin−1x−cos−1xdx=π2[∫sin−1xdx−∫cos−1xdx] [∵sin−1x+cos−1x=2π]
Now we solve first and second expressions separately. For first expression, ∫sin−1xdx
Put x=sin2θ ⇒cos2θ=1−2x ⇒dx=sin2θdθ
∫θ.sin2θdθ=2−θcos2θ+21∫cos2θdθ =2−θcos2θ+4sin2θ+c1 =2(2x−1)sin−1x+21x(1−x)+c1For second expression, ∫cos−1xdx
Put x=cos2θ ⇒dx=−2cosθsinθdθ=−sin2θdθ ∫cos−1xdx=−∫θ.sin2θdθ=2θcos2θ−4sin2θ+c2
Therefore,I=π2[2(2x−1){sin−1x−cos−1x}+x(1−x)]+cI=π2(2x−1)sin−1x−2(2x−1).2π +x(1−x)]+c⇒I=π2[(2x−1)sin−1x+x(1−x)]−x+c