Question
Question: \(\int_{}^{}{\frac{\sec^{2}x\tan x}{\sec^{2}x + \tan^{2}x}dx}\) =...
∫sec2x+tan2xsec2xtanxdx =
A
log(sec2 x + tan2 x) + c
B
2(sec2x+tan2x)2 + c
C
21log (sec2 x + tan2x) + c
D
None of these
Answer
None of these
Explanation
Solution
∫sec2x+tan2xsec2xtanxdx t = sec2 x + tan2x
= ∫tdt/4 dxdt=2secx.secx tan x + 2 tan x.sec2 x
=41 log (sec2 x + tan2x) + c = 4 tan x sec2x
4dt = tan x sec2x dx