Solveeit Logo

Question

Question: \(\int_{}^{}{\frac{\sec^{2}x\tan x}{\sec^{2}x + \tan^{2}x}dx}\) =...

sec2xtanxsec2x+tan2xdx\int_{}^{}{\frac{\sec^{2}x\tan x}{\sec^{2}x + \tan^{2}x}dx} =

A

log(sec2 x + tan2 x) + c

B

(sec2x+tan2x)22\frac{(\sec^{2}x + \tan^{2}x)^{2}}{2} + c

C

12\frac{1}{2}log (sec2 x + tan2x) + c

D

None of these

Answer

None of these

Explanation

Solution

sec2xtanxsec2x+tan2xdx\int \frac { \sec ^ { 2 } x \tan x } { \sec ^ { 2 } x + \tan ^ { 2 } x } d x t = sec2 x + tan2x

= dt/4t\int \frac { \mathrm { dt } / 4 } { \mathrm { t } } dtdx\frac{dt}{dx}=2secx.secx tan x + 2 tan x.sec2 x

=14\frac{1}{4} log (sec2 x + tan2x) + c = 4 tan x sec2x

dt4\frac{dt}{4} = tan x sec2x dx