Solveeit Logo

Question

Question: \[\int_{}^{}{\frac{\sec^{2}x}{(1 + \tan x)(2 + \tan x)}\mspace{6mu} dx}\]...

sec2x(1+tanx)(2+tanx)6mudx\int_{}^{}{\frac{\sec^{2}x}{(1 + \tan x)(2 + \tan x)}\mspace{6mu} dx}

A

1+tanx=t1 + \tan x = t

B

2+tanx=t2 + \tan x = t

C

tanx=t\tan x = t

D

cosec2x1+cotxdx=\int_{}^{}{\frac{\text{cose}\text{c}^{2}x}{1 + \cot x}dx =}

Answer

2+tanx=t2 + \tan x = t

Explanation

Solution

Put cosecxsinx+c\text{cosec}x - \sin x + c then

logtanx+c{logtan}x + c.