Solveeit Logo

Question

Question: \[\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x}\] is equal to...

π43π4dx1+cosx\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1 + \cos x} is equal to

A

2

B

-2

C

½

D

-1/2

Answer

2

Explanation

Solution

Step 1: Use the identity

1+cosx=2cos2 ⁣(x2)1 + \cos x = 2\cos^2\!\bigl(\tfrac{x}{2}\bigr)

Hence

11+cosx=12cos2 ⁣(x2)=12sec2 ⁣(x2).\frac{1}{1 + \cos x} = \frac{1}{2\cos^2\!\bigl(\tfrac{x}{2}\bigr)} = \tfrac12\,\sec^2\!\bigl(\tfrac{x}{2}\bigr).

Step 2: Integrate

dx1+cosx=12sec2 ⁣(x2)dx=122tan ⁣(x2)=tan ⁣(x2).\int \frac{dx}{1 + \cos x} = \tfrac12 \int \sec^2\!\bigl(\tfrac{x}{2}\bigr)\,dx = \tfrac12 \cdot 2\,\tan\!\bigl(\tfrac{x}{2}\bigr) = \tan\!\bigl(\tfrac{x}{2}\bigr).

Step 3: Evaluate definite integral

tan ⁣(x2)π/43π/4=tan ⁣(3π8)tan ⁣(π8).\left.\tan\!\bigl(\tfrac{x}{2}\bigr)\right|_{\pi/4}^{3\pi/4} = \tan\!\bigl(\tfrac{3\pi}{8}\bigr) - \tan\!\bigl(\tfrac{\pi}{8}\bigr).

Using

tan ⁣(3π8)=1+2,tan ⁣(π8)=21,\tan\!\bigl(\tfrac{3\pi}{8}\bigr)=1+\sqrt2,\quad \tan\!\bigl(\tfrac{\pi}{8}\bigr)=\sqrt2-1,

we get

(1+2)(21)=2.(1+\sqrt2)-(\sqrt2-1)=2.