Solveeit Logo

Question

Question: \[\int_{}^{}\frac{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}}{\mathbf{x(}\mathbf{x}^{\mathbf{2}}\mathbf{-}\...

x2+1x(x21)dx=\int_{}^{}\frac{\mathbf{x}^{\mathbf{2}}\mathbf{+ 1}}{\mathbf{x(}\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{1)}}\mathbf{dx =}

A

logx21x+c\log\frac{x^{2} - 1}{x} + c

B

logx21x+c- \log\frac{x^{2} - 1}{x} + c

C

logxx2+1+c\log\frac{x}{x^{2} + 1} + c

D

logxx2+1+c- \log\frac{x}{x^{2} + 1} + c

Answer

logx21x+c\log\frac{x^{2} - 1}{x} + c

Explanation

Solution

I=(2xx211x)dxI = \int_{}^{}{\left( \frac{2x}{x^{2} - 1} - \frac{1}{x} \right)dx} \Rightarrow I=log(x21)logx+cI = \log(x^{2} - 1) - \log x + c

I=logx21x+c\Rightarrow I = \log\frac{x^{2} - 1}{x} + c.