Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\mathbf{x + 2}}{\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{2x + 4}}}\)equals...

x+2x22x+4\int_{}^{}\frac{\mathbf{x + 2}}{\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{2x + 4}}}equals

A

x22x+4+3sinh1[(x1)3]+c\sqrt{x^{2} - 2x + 4} + 3{\sin h}^{- 1}\left\lbrack \frac{(x - 1)}{\sqrt{3}} \right\rbrack + c

B

x22x+43sinh1[(x1)3]+c\sqrt{x^{2} - 2x + 4} - 3{\sin h}^{- 1}\left\lbrack \frac{(x - 1)}{\sqrt{3}} \right\rbrack + c

C

x22x+4+3cosh1[(x1)3]+c\sqrt{x^{2} - 2x + 4} + 3{\cos h}^{- 1}\left\lbrack \frac{(x - 1)}{\sqrt{3}} \right\rbrack + c

D

x22x+43cosh1[(x1)3]+c\sqrt{x^{2} - 2x + 4} - 3{\cos h}^{- 1}\left\lbrack \frac{(x - 1)}{\sqrt{3}} \right\rbrack + c

Answer

x22x+4+3sinh1[(x1)3]+c\sqrt{x^{2} - 2x + 4} + 3{\sin h}^{- 1}\left\lbrack \frac{(x - 1)}{\sqrt{3}} \right\rbrack + c

Explanation

Solution

x+2x22x+4dx=x+2(x1)2+(3)2dx=x1+3(x1)2+(3)2dx=x1x22x+4dx+3dx(x1)2+(3)2\int_{}^{}\frac{\mathbf{x + 2}}{\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{- 2x + 4}}}\mathbf{dx =}\int_{}^{}{\frac{\mathbf{x + 2}}{\sqrt{\mathbf{(x - 1}\mathbf{)}^{\mathbf{2}}\mathbf{+}\left( \sqrt{\mathbf{3}} \right)^{\mathbf{2}}}}\mathbf{dx =}\int_{}^{}{\frac{\mathbf{x - 1 + 3}}{\sqrt{\mathbf{(x - 1}\mathbf{)}^{\mathbf{2}}\mathbf{+}\left( \sqrt{\mathbf{3}} \right)^{\mathbf{2}}}}\mathbf{dx}}}\mathbf{=}\int_{}^{}\frac{\mathbf{x}\mathbf{-}\mathbf{1}}{\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{2x + 4}}}\mathbf{dx +}\int_{}^{}\frac{\mathbf{3dx}}{\sqrt{\mathbf{(x}\mathbf{-}\mathbf{1}\mathbf{)}^{\mathbf{2}}\mathbf{+ (}\sqrt{\mathbf{3}}\mathbf{)}^{\mathbf{2}}}}

Put x22x+4=t2x^{2} - 2x + 4 = t^{2} in the first expression

2(x1)dx=2tdt\Rightarrow 2(x - 1)dx = 2tdt

(x1)dx=tdt\Rightarrow (x - 1)dx = tdt

x+2x22x+4⥂⥂dx\int_{}^{}\frac{x + 2}{\sqrt{x^{2} - 2x} + 4} ⥂ ⥂ dx =tdtt+3dx(x1)2+(3)2= \int_{}^{}{\frac{tdt}{t} + 3\int_{}^{}\frac{dx}{\sqrt{(x - 1)^{2} + (\sqrt{3})^{2}}}}

x+2x22x+4dx=x22x+4+3sinh1[x13]+c\int_{}^{}{\frac{x + 2}{\sqrt{x^{2} - 2x + 4}}dx} = \sqrt{x^{2} - 2x + 4} + 3{\sin h}^{- 1}\left\lbrack \frac{x - 1}{\sqrt{3}} \right\rbrack + c