Question
Question: \(\int_{}^{}\frac{\mathbf{x + 2}}{\sqrt{\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{2x + 4}}}\)equals...
∫x2−2x+4x+2equals
A
x2−2x+4+3sinh−1[3(x−1)]+c
B
x2−2x+4−3sinh−1[3(x−1)]+c
C
x2−2x+4+3cosh−1[3(x−1)]+c
D
x2−2x+4−3cosh−1[3(x−1)]+c
Answer
x2−2x+4+3sinh−1[3(x−1)]+c
Explanation
Solution
∫x2−2x+4x+2dx=∫(x−1)2+(3)2x+2dx=∫(x−1)2+(3)2x−1+3dx=∫x2−2x+4x−1dx+∫(x−1)2+(3)23dx
Put x2−2x+4=t2 in the first expression
⇒2(x−1)dx=2tdt
⇒(x−1)dx=tdt
∫x2−2x+4x+2⥂⥂dx =∫ttdt+3∫(x−1)2+(3)2dx
∫x2−2x+4x+2dx=x2−2x+4+3sinh−1[3x−1]+c